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Abstract 

 

Mitochondrial genomes from two dipluran hexapods of the genus Campodea have 

been sequenced. Gene order is the same as in most other hexapods and 

crustaceans. Secondary structures of tRNAs reveal specific structural changes in 

tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and 

amino acid composition, as well as structural features of both ribosomal RNA 

subunits, reveal substantial differences among the analysed taxa. Although the two 

Campodea species are morphologically highly uniform, genetic divergence is larger 

than expected, suggesting a long evolutionary history under stable ecological 

conditions.  

 

 



Introduction 

 

Mitochondrial sequence data are commonly used in phylogenetic studies from large 

scale phylogenetics down to the population level. With few exceptions, mitochondrial 

genomes from multicellular animals are circular DNA molecules, about 16 Kb in size, 

containing 37 genes encoding for two ribosomal RNA molecules (rrnS and lrrS), 13 

protein subunits (cox1-3, cob, nad1-6 and nd4L, atp6 and atp8) and 22 transfer RNA 

molecules (trnX) (Wolstenholme, 1992; Boore, 1999). In addition, mitochondrial 

genomes of insects bear one large A+T rich noncoding region, which is involved in 

the initiation of mitochondrial replication and transcription (Wolstenholme, 1992), and 

is therefore commonly referred to as the mitochondrial control region.  

Because of the ease of amplification and sequencing, the mitochondrial genome has 

been extensively studied for phylogenetic purposes, as well as for its peculiar 

patterns of molecular evolution (Boore, 1999). Concerning the latter, the 

mitochondrial genome has been found to exhibit extensive nucleotide compositional 

bias. One of the best examples of mitochondrial compositional bias is that observed 

in insects (Simon  et al., 1994), and some other arthropods (e.g.: Black et al., 1998; 

Negrisolo et al., 2004), where a significant higher amount of Adenine and Thymine 

nucleotides (A+T bias) has been found. Another type of compositional bias is that 

affecting base content at Protein Coding Genes (PCGs) in the different strands of the 

mitochondrial genome (Perna & Kocher, 1995). In a thorough investigation of this 

strand-specific bias across Metazoa, Hassanin et al. (2005) found clear evidence of 

an asymmetric mutational bias, as well as traces of the reversal of such a bias in 

some taxa due to an inversion of the control region. 

Gene rearrangements of the mitochondrial genome are also well known, and several 

mechanisms have been proposed to explain gene order changes, involving 

duplication events followed by the random (Boore, 2000) or non-random (Lavrov et 



al., 2004) loss of some duplicated copies. These events sometimes leave unusually 

large fragments of non-coding DNA, in addition to the canonical control region 

(Lavrov et al., 2002). 

While partial sequences from the control region or from single genes, like cox1, cob, 

rrnS, have been utilised in phylogenetic studies at the species or population level, 

complete mitochondrial genome data have been used predominantly in phylogenetic 

analyses above the family level (e.g: Nardi et al., 2003; Negrisolo et al., 2004; 

Cameron et al., 2005; Cook et al., 2005). In most of the latter cases only PCGs were 

studied. However, complete mitochondrial genomes provide more data than just 

sequence information:  

(1) Gene order is not conserved among metazoa and gene translocations may serve 

as characters in phylogenetic analyses. For example the “Pancrustacea” hypothesis - 

a close relationship between Crustacea and Hexapoda (excluding the Myriapoda, 

which were traditionally viewed as sistergroup to hexapods) - has been suggested on 

the basis of a gene translocation involving a mitochondrial tRNA gene (Boore et al., 

1998).  

(2) Secondary structure features of tRNAs and rRNAs are seldomly used as 

characters in phylogenetic analyses but with a growing amount of data these may be 

of greater value soon (e.g. Macey et al., 2000).  

(3) The mitochondrial genetic code differs in some codons from the standard code 

and also varies among metazoan taxa. These deviations are of phylogenetic value as 

well (e.g. Castresana et al., 1998; Telford et al., 2000).  

During the last ten years the traditional view of arthropod phylogeny has been 

strongly challenged by molecular analyses. As a result the Pancrustacea hypothesis 

is now well supported by mitochondrial gene rearrangement data (Boore et al., 1998) 

and sequence based analyses of both, mitochondrial (Wilson et al. 2000; Hwang et 

al. 2001; Lavrov et al., 2004) and nuclear genes (Mallatt et al., 2004, Regier et al., 



2005). On the other hand, crustacean and even hexapod monophyly, as well as their 

internal relationships, are still under debate (Regier et al., 2005; Babbitt & Patel, 

2005; Podsiadlowski & Bartolomaeus, 2005). In particular, some analyses using 

complete mitochondrial datasets do not support the monophyly of Hexapoda, with 

different crustacean subtaxa forming sistergroups to Collembola and Insecta (Nardi 

et al., 2003; Cook et al., 2005). In this context, apterygote taxa play a crucial role, 

and their reciprocal relationships have not yet been resolved with certainty 

(Kristensen, 1997; Kukalova-Peck, 1987; Stys & Bilinski, 1990; Carapelli et al., 

2000). Recently, the first mitochondrial genome of a member of Diplura, the japygid 

Japyx solifugus, has been published (Carapelli et al., 2005) and the corresponding 

phylogenetic analysis suggests a paraphyletic origin of Hexapoda. On the other hand 

detailed analyses of hexapod relationships based on the nuclear 18S rRNA results in 

hexapod monophyly (Kjer, 2004; Babitt & Patel, 2005). The increased use of rRNA 

sequences in phylogenetic studies has stimulated the debate over the correct 

alignment procedures. One approach calls for using the information contained in 

rRNA secondary structures (Kjer, 1995, 2004), which, in turn, are inferred from 

general models based on the comparison of a large number of sequences (Hickson 

et al., 1996). 

In this study we present two additional mitochondrial genomes from apterygote 

hexapods: Campodea fragilis and C. lubbocki (Diplura: Campodeidae). We provide 

detailed analyses of nucleotide and amino acid frequencies, and compositional bias,  

as well as the reconstruction of the putative secondary structures of tRNA and rRNA 

genes. Although a lot of mitochondrial genomes from arthropods are published now, 

only a few congeneric species are compared. The genus Campodea has a worldwide 

distribution and comprises about 150 soil-dwelling, herbivorous species, sized up to 5 

mm and highly uniform in appearance. The two species studied exhibit only a few 

morphological differences: spatulate (C.l.) or acuminate (C.f.) praetarsal 



appendages; presence (C.l.) or absence (C.f.) of mediane macrochaetae on 

abdominal tergites; annulated (C.l.) or smooth (C.f.) cerci (Palissa, 1964). Both seem 

to occupy similar ecological niches but their genetic divergence turned out to be 

rather high, suggesting a long evolutionary history under stable environmental 

conditions.  

 

 

Results and Discussion 

 

Genome organisation  

Both Campodea mitochondrial genomes presented here share the same 37 genes 

with most bilaterian animals and have the same gene arrangement (Fig. 1) as other  

apterygote hexapods (Tricholepidion gertschi, NC005437; Nesomachilis australica, 

NC006895; Japyx solifugus AY771989), insects (Drosophila melanogaster 

NC001709), and crustaceans (Daphnia pulex NC000844; Penaeus monodon 

NC002184). This gene order appears to be the ancestral state for Pancrustacea 

(Crustacea+Hexapoda) and differs from that of chelicerates and myriapods by the 

translocation of trnL1 (Boore et al., 1998).  

In both Campodea species gene overlaps exist between the PCGs atp8/atp6 (7 

nucleotides) and nad4/nad4L (7 nucleotides). Other overlaps occur between tRNA 

genes or between a tRNA- and a protein-coding gene. Only a few overlaps are larger 

than 3 nucleotides, notably at the trnY/cox1 boundary in both species (8nt in C. 

lubbocki and 5nt in C. fragilis). A large non-coding region is present between rrnS 

and trnI (558nt in C. fragilis and 561nt in C. lubbocki). This is, by all evidence 

available, homologous to the mitochondrial control region (CR), which, in insects, is 

usually called AT-rich region for exhibiting a remarkable A+T-bias (up to >90% in 

hymenopterans; Crozier & Crozier, 1993). In Campodea, the putative AT-rich region 



shows A+T content between 84.2% (C. fragilis) and 89.1% (C. lubbocki). More 

unusual, other non-coding (ncod) sequences are found between other mitochondrial 

genes of the two Campodea species. One of them, shared by both species, is 

located between trnS2 and nad1 (56nt in C. fragilis, 80nt in C. lubbocki), while only 

C. fragilis has an additional ncod region of 111nt between nad2 and trnW (Fig. 1). 

Interestingly, the two ncod regions can be folded in apparently stable secondary 

structures (Fig. 2). Most other arthropods lack non-coding sequences larger than a 

few nucleotides (with the control region as an exception). Although very unusual, the 

occurrence of large non-coding regions abutting gene junctions has been observed in 

insects and myriapods (Lavrov et al., 2002; Bae et al., 2004). Sometimes these 

fragments are mentioned as remnants of gene duplication events due to possible 

errors during the replication of the mitochondrial genome (Boore, 2000). Extra copies 

of mitochondrial genes are subsequently eliminated from the compactly arranged 

mitochondrial genome (Boore, 1999). The occurrence of these structures would 

suggest that the remnant of an exceeding copy of a tRNA gene is still present in the 

genomes of the taxa under study. In addition, the ncod fragments found in both 

Campodea species between trnS2 and nad1 clearly exhibit homologous patterns in 

either primary sequence and secondary structure. Accordingly, this feature would 

suggest that the presumed duplication event has occurred before the speciation of 

the two taxa. 

A+T content of complete mitochondrial genomes varies among insects (Table 1). 

While Japyx solifugus (Japygidae), the only other dipluran species with published 

mitogenomic data, has the lowest value among hexapods (64.8%), C. lubbocki has 

the highest value among apterygote insects (74.9%), followed by two collembolans 

(Gomphiocephalus hodgsoni and Tetrodontophora bielanensis) and C. fragilis 

(72.6%). Comparatively, high values are also found in Pterygota, while 

archaeognathan and zygentoman species range between 67-69%. In all species, 



third-codon position sites of PCGs have significantly higher A+T content than either 

first and second codon positions. Functional reasons for the strong differences of 

A+T content among hexapods are still under debate. 

 

Protein coding genes 

There is no significant difference in the size of the PCGs of C. fragilis and C. lubbocki 

compared to each other and to other apterygote hexapods (Table 2). The three 

starting codons ATA, ATG and ATT are used in both species, while only in C. 

lubbocki the starting codon ATC is used for atp8, nad1 and nad5. In some cases stop 

codons are truncated (cox1-3 in C. fragilis; cox3, nad3, nad4 and nad6 in C. 

lubbocki) and possibly post-transcriptionally completed to TAA after cleavage 

(Okimoto et al., 1990, Lavrov et al., 2002). 

Nucleotide sequence similarity of PCGs between the two Campodea species ranges 

from 49.5% (nad6) to 77.9% (cox2) (Table 2). As an example, the pairwise similarity 

of cox1-cox3 between C. fragilis and C. lubbocki (77.1%) is rather low: in the same 

region, four Ixodes species show levels of nucleotide divergence ranging from 75% 

to 82%, five Drosophila-species are in the range 92-99%, while two species of the 

crustacean Triops (T. cancriformis and T. longicaudatus) differ by 81.2%, and two 

species of Bombyx (B. mori and B. mandarina) by 96%. In contrast, the divergence 

between the two Campodea sequences is more similar to that observed between 

species from different orders, such as in the comparison between Pteronarcys 

princeps (Pterygota: Plecoptera) and five Drosophila species (78-79%), or the 

comparison of P. princeps with the zygentoman Tricholepidion gertschi (73.5%). Frati 

et al. (1997) provided a comparison between different collembolan species and other 

hexapods based on cox2 sequences. Levels of nucleotide similarity for cox2 between 

congeneric species (genera Orchesella and Isotomurus) were only slightly higher 

(80.4-81%) than that observed between C. fragilis and C. lubbocki (77.9% or 



78.5%?). On the other hand, nucleotide similarity of cox2 between Campodea 

species and J. solifugus varies between 67.4% and 67.8%, well in the range of that 

estimated, in Collembola, between species from different lineages (61.9%-69.7%), or 

between collembolan species and other pterygote insects (60.4%-68.9%). Looking at 

the inferred amino acid sequence similarity, the values estimated in diplurans 

(68.1%-69.5% between Campodea and J. solifugus) are comparable to those found 

between species from different orders among pterygote insects (Simon et al., 1994). 

We conclude that, although morphologically very uniform, the taxon Campodea is 

genetically highly diverse and that, under the molecular clock hypothesis, the split 

between the two species occurred comparably long ago, perhaps as long as some of 

the basal splits among pterygote insects. Indeed, taxonomic categories above the 

species do not necessarily imply similar genetic and morphological differentiation, nor 

similar age in different lineages. Our results in Campodea parellel those obtained in 

collembolans (Frati et al., 1997, 2000) in indicating high levels of genetic divergence 

(in itochondrial sequences) even between congeneric species which do not exhibit 

comparable morphological differentiation. These results point towards either 

accelerated rates of evolution or remarkably older age of genera of apterygote 

hexapods. 

As shown by Hassanin et al. (2005), PCGs differ for their A vs. T and C vs. G content 

according to the strand (J- or N-strands; sensu Simon et al., 1994) where they are 

encoded. Genes encoded on the J-strand show a slight bias towards Ts over As and 

a strong bias towards Cs over Gs, while genes encoded on the N-strand show a 

much stronger bias towards Ts over As and towards Gs over Cs (Table 2, Fig. 3). 

One reason for this outcome might be the asymmetrical replication process, during 

which one strand is single-stranded for a longer time than the other, and therefore 

more susceptible for specific mutations (for more details see: Hassanin et al., 2005). 



Relative synonymous codon usage in PCGs (Table 3) reveals that the genome-wide 

base compositional bias for A+T is also reflected in codon usage. The two 

Campodea species differ in preferred codons for Glycine, Proline and Threonine, 

whereas both species differ from J. solifugus in codon preferences for Alanine, 

Histidine and Valine. In the case of Histidine, this reflects the strong differences in 

A+T content, as in J.solifugus codon the codon CAC is preferred, whereas 

Campodea species prefer CAT. A similar observation is evident in the case of 

Leucine, for which TTA is the preferred codon in all three diplurans, but to a much 

stronger degree in Campodea than in J. solifugus. 

 

Transfer-RNA coding genes 

In both species all 22 tRNA-encoding genes usually found in mitochondrial genomes 

of metazoans are present. In both species the most likely secondary structure 

models for tRNA-R, tRNA-S1 and tRNA-S2 lack the D-arm (Fig. 4). In C. lubbocki 

also the tRNA-C has a shortened (or missing) D-arm. In contrast, all tRNAs 

mentioned above show the usual cloverleaf secondary structure in J. solifugus (Fig. 

4), as well as all remaining tRNAs in C. fragilis and C. lubbocki (data not shown). 

Accordingly, a reduction of the D-arm of tRNA-R, and the two types of tRNA-S, must 

have evolved after the split between Campodeidae and Japygidae. Reduction of the 

D-arm of tRNA-C probably occured even later, after the split between C. lubbocki and 

C. fragilis. These data may be of value for phylogenetic inferences, when 

mitogenomic data will be available from more dipluran species.  

 

Ribosomal-RNA coding genes 

The two genes for ribosomal RNA subunits (rrnL for 16S rRNA and rrnS for 12S 

rRNA) can be folded in an inferred secondary structure composed of paired and 

single strand fragments (Figs. 5, 6). Comparative analysis shows that both rRNA 



subunits are composed of a mosaic of variable and conserved sequence fragments, 

which are distributed in paired and unpaired regions of all domains (Fig. 7). This is 

probably due to variable functional constraints, acting at different degrees in specific 

parts of the rRNA subunits, which are necessary to maintain the ribosome 

functionality. This evidence suggests that different rates of nucleotide substitution 

affect each domain of rrnL and rrnS. Sequence similarity in aligned (based on 

secondary structure) rRNAs of C. lubbocki and C. fragilis is within the range of 

sequence similarity of the PCGs (rrnL: 74.3%; rrnS: 73.8%). 

In general, core structural elements of C. fragilis and C. lubbocki rRNA subunits 

closely resemble those proposed for Drosophila melanogaster. The inferred 

secondary structure of the 12S rRNA of each species (Fig. 5) displays a considerable 

degree of differentiation in terms of length and shape of most of domains I and II (Fig. 

7a), with conserved stretches of sequences present only on helices h and m. 

Conversely, domain III is probably the most conserved fragment of the entire 12S 

rRNA subunit, showing many invariant structural elements between C. fragilis and C. 

lubbocki (Figs. 5, 7a: all helices from o to a1 with the exception of u) and some 

identical stretches of primary sequence. With few exceptions aside (Page, et al. 

2002), this evidence is in agreement with the data obtained from broader 

comparisons that include extended datasets of animal mitochondrial 12S rRNA 

sequences (Hickson et al., 1996; Simon et al., 1996). 

Domain I is probably the most variable part of the 16S rRNA subunit (Fig. 6), differing 

in terms of length and primary sequence between C. fragilis and C. lubbocki. On 

domain II the highest levels of sequence variability can be observed in the most 

peripheral helices (g, j, k and o), in the descendant part of helix I and in the single 

strand segments connecting helices l, m and n (Fig. 7b). An extensive primary 

sequence homology can be observed in the fragment enclosed between the 

ascendant and the descendant parts of helix t. 



 

 

Experimental procedures 

 

C. lubbocki;  DNA isolation and PCR 

Campodea lubbocki was collected in the garden of the Institute for Zoology, Freie 

Universität Berlin. One individual was cut into pieces and directly used for rolling 

circle amplification with the Templify kit (Amersham) following the manufacturer’s 

protocol. Templify treated material was diluted with water (1:5) and used as DNA 

template in PCR. Two additional specimens were ethanol fixed for SEM, in order to 

determine the species according to Palissa (1964). 

Initially five partial mitochondrial sequences (cox1, nad5, cob, rrnL, rrnS) were 

determined with PCR primer pairs designed for this purpose by looking for conserved 

regions of mitochondrial genes from other hexapod and crustacean sequences 

(Podsiadlowski & Bartolomaeus, 2005). PCR primers were purchased from metabion 

(Germany). PCR was performed on Mastercycler and Mastercycler Gradient 

(Eppendorf, Hamburg, Germany) using the Eppendorf HotMasterTaq kit. 50 µl 

reaction volumes were set up as follows: 42 µl sterilized distilled water, 5 µl 10x 

reaction buffer 1µl dNTP mix (Eppendorf) 1 µl primer mix (10 µM each), 1 µl DNA 

template, 0,2 µl (1u) HotMasterTaq polymerase.  The cycling protocol included an 

initial denaturation step (94°C, 2 min), 40 cycles of denaturation (94°C, 30 sec), 

annealing (1 min, primer specific annealing temperature) and extension (68°C, 90 

sec) and a final extension step (68°C, 1 min). After agarose (0,9%) gel separation 

and visualization of ethidium-bromide stained PCR products, purification for 

sequencing (see below) was performed using the PCR purification kit (Qiagen) or 

when necessary using the Gel extraction kit (Qiagen). 



In a second step the determined sequences were used to design five additional PCR 

primer pairs bridging the gaps between them. PCR was performed as described 

above, except for using an extension time of seven minutes. PCR products were 

inspected and purified as described above. 

 

C. fragilis;  DNA isolation and PCR 

Total DNA was extracted from a specimen of C. fragilis collected nearby the Belcaro 

Castle (Siena; Italia) using the Wizard SV Genomic DNA purification system 

(Promega). Preliminary amplification of short fragments of nad4 and rrnL, obtained 

using mitochondrial universal primers (Simon et al., 1994), were used to design 

species-specific primers to generate two long PCR products corresponding to the 

entire mitochondrial genome. The first long PCR product (about 6.5 Kb) amplified the 

fragment between nd4 and rrnL, with the primer pair Camp-rRNAN (5’-

GGTTGTATCGGAAGCTGCAGCTAG-3’) and Camp-nd4J (5’- 

CTGGGTCGATAGTTTTGGCTGC-3’), using the following two-steps PCR conditions: 

35 cycles at 96°C for 1 min and 68°C for 8 min, followed by incubation at 68°C for 15 

min. The second fragment (8.5 Kb) corresponding to the sequence encompassed 

between rrnL and nad4, was amplified with the primer pair Camp-rRNAJ and Camp-

nd4R (corresponding to the reverse complementary of the previous pair), using the 

following PCR condition: 35 cycles at 96°C for 1 min and 68°C for 12 min, followed 

by incubation at 68°C for 15 min.  

PCR reactions were performed on a GeneAmp PCR System 2700 (Applied 

Biosystem) in 25 µl reaction volume set up as follows: 10,75 µl of sterilized distilled 

water, 2.5 µl 10x reaction buffer, 2.5 µl of 25 mM MgCl2, 4µl dNTP mix, 1.25 µl of 

each primer (10 µM), 2.5 µl DNA template and 0,25 µl (1.25u) of TaKaRa LA Taq 

polymerase (Takara). Each PCR reaction yielded a single band when visualized with 

ethidium bromide staining after electrophoresis in a 1% agarose gel.  



 

Sequencing and sequence analysis 

Sequencing of C. lubbocki mitochondrial DNA was carried out with a CEQ 8000XL 

automated DNA Analysis System (Beckman Coulter) using the CEQ DTCS Kit 

following the manufacturer’s protocol, and using initially PCR primers and 

subsequently new internal primers until completion of sequences (primer walking). In 

C. fragilis, the two long PCR fragments were purified using a Montage PCR 

Centrifugal Filter Device (Millipore), and processed for DNA sequencing by the 

production facility of the DOE Joint Genome Institute (Walnut Creek, California). 

Flanking regions of the two long PCR sequences were then re-amplified using 

species-specific primers and sequenced in a CEQ 8000XL. All sequences were 

assembled using Sequencher 4.2.2 (Gene Codes) and the chromatograms were 

examined by eye to verify sequencing accuracy. The amount of clones sequenced 

provided a 10X average coverage for both long PCR fragments. 

To determine gene identity BLAST search on NCBI Blast Entrez databases was 

used. Not determinable by primary sequence information alone, the presumed 

location of rRNA genes in both Campodea species has been determined according 

to the observed similarity in primary sequence with other hexapod taxa, and to 

comparison of 12S and 16S rRNA secondary structures between the two dipluran 

species and D. melanogaster. Start codons in protein coding genes were inferred to 

be the nearest start codon to the beginning of the sequence alignment of 

homologous genes with other hexapod species. Most tRNAs were identified using 

tRNAscan-SE 1.21 (Lowe & Eddy, 1997) and DOGMA (Wyman et al., 2004), the 

remaining ones were found by eye inspection of the suspected regions. Transfer-

RNA identity was specified by its anticodon sequence. 

The secondary structures of the mitochondrial rRNA subunits (12S and 16S) for both 

Campodea species were derived by analogy with available models obtained for other 



arthropods (Gutell et al., 1994; Misof & Fleck, 2003; Cannone et al., 2002). 

Secondary structures of 12S and 16S rRNA genes and of intergenic non-coding 

regions were then visualized using the program RnaViz 2.0 (De Rijk & DeWachter, 

1997). 

Nucleotide frequencies and codon usage was determined using DAMBE (version 

4.2.13; Xia & Xie, 2001). PCGs were aligned and compared using Bioedit (version 

7.0.1; Hall, 1999). 

 

Acknowledgements 

Part of this work was performed by the University of California, Lawrence Berkeley 

National Laboratory under Contract No. DE-AC02-05CH11231 

References 

 

Babbitt, C.C. and Patel, N.H. (2005) Relationships within the Pancrustacea: 

Examining the influence of additional Malacostracan 18S and 28S rDNA. 

Crustacean Issues 16: 275-294 

Bae, J.S., Kim, I., Sohn, H.D. and Jin, B.R. (2004) The mitochondrial genome of the 

firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and 

phylogenetic analysis with other insects. Mol Phylogenet Evol 32: 978-985. 

Black IV, W.C., and Roehrdanz, R.L. (1998) Mitochondrial gene order is not 

conserved in arthropods: prostriate and metastriate tick mitochondrial genomes. 

Mol Biol. Evol 15: 1772-1785. 

Boore, J.L. (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: 1767-1780. 

Boore, J.L. (2000) The duplication/random loss model for gene rearrangement 

exemplified by mitochondrial genomes of deuterostome animals. In Comparative 

genomics (D. Sankoff and J. H. Nadeau, eds.), pp. 133–147. Kluwer Academic 

Publishers, Dordrecht, The Netherlands. 



Boore, J.L., Lavrov, D. and Brown, W.M. (1998) Gene translocation links insects and 

crustaceans. Nature 393: 667-668. 

Buckley, T.R., Simon, C., Flook, P.K. and Misof, B. (2000) Secondary structure and 

conserved motifs of the frequently sequenced domains IV and V of the insect 

mitochondrial large subunit rRNA gene. Insect Mol Biol 9: 565-580. 

Cameron, S.L., Miller, K.B., D'Haese, C.A., Whiting, M.F. and Barker, S.C. (2004) 

Mitochondrial genome data alone are not enough to unambiguously resolve the 

relationships of Entognatha, Insecta and Crustacea sensu lato (Arthropoda). 

Cladistics 20: 534-557. 

Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D'Souza, L.M., Du, Y., 

Feng, B., Lin, N., Madabusi, L.V., Muller, K.M., Pande, N., Shang, Z., Yu, N. and 

Gutell, R.R. (2002) The Comparative RNA Web (CRW) Site: An Online Database 

of Comparative Sequence and Structure Information for Ribosomal, Intron, and 

other RNAs. BioMed Central Bioinformatics 3: 2. 

Carapelli, A., Frati, F., Nardi, F., Dallai R. & Simon, C. 2000. Molecular phylogeny of 

the apterygotan insects based on nuclear and mitochondrial genes. Pedobiologia 

44: 361-373. 

Carapelli, A., Nardi, F., Dallai, R., Boore, J.L., Lio, P. and Frati, F. (2005) 

Relationships between hexapods and crustaceans based on four mitochondrial 

genes. Crustacean Issues 16: 295-306. 

Castresana, J., Feldmaier-Fuchs, G. and Pääbo, S. (1998) Codon reassignment and 

amino acid composition in hemichordate mitochondria. Proc Nat Acad Sci USA 95: 

3703-3707. 

Cook, C.E., Yue, Q. and Akam, M. (2005) Mitochondrial genomes suggest that 

hexapods and crustaceans are mutually paraphyletic. Proc R Soc B 272: 1295-

1304. 



Crozier, R.H. and Crozier, Y.C. (1993) The mitochondrial genome of the honeybee 

Apis mellifera: complete sequence and genome organization. Genetics 133: 97-

117. 

De Rijk, P. and De Wachter, R. (1997) RnaViz, a program for the visualisation of 

RNA secondary structure. Nucleic Acids Res 25: 4679-4684. 

Frati, F., Simon, C., Sullivan, J. and Swofford, D.L. (1997) Evolution of the 

mitochondrial cytochrome oxidase II gene in Collembola. J Mol Evol 44: 143-158. 

Frati, F., Dell’Ampio, E., Casasanta, S., Carapelli, A. and Fanciulli, P.P. (2000) Large 

amounts of genetic divergence among Italian populations and species of the 

genus Orchesella (Insecta, Collembola) and the relationships of two new species. 

Mol Phylog Evol 17: 456-461. 

Gutell, R.R., Larsen, N. and Woese, C.R. (1994) Lessons from an evolving rRNA mit 

LSU and 23S structures from a comparative perspective. Microbiol Rev 58: 10-26. 

Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and 

analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98.  

Hassanin, A., Leger, N. and Deutsch, J. (2005) Evidence for multiple reversals of 

asymmetric mutational constraints during the evolution of the mitochondrial 

genome of Metazoa, and consequences for phylogenetic inferences. Syst Biol 54: 

277-298. 

Hickson, R.E., Simon, C., Cooper, A., Spicer, G.S., Sullivan, J. and Penny, D. (1996) 

Conserved sequence motifs, alignment, and secondary structure for the third 

domain of animal 12S rRNA. Mol Biol Evol 13: 150-169. 

Hwang, U.W., Friedrich, M., Tautz, D., Park, C.J. and Kim, W. (2001) Mitochondrial 

protein phylogeny joins myriapods with chelicerates. Nature 413: 154-157. 

Kjer, K.M. (1995) Use of rRNA secondary structure in phylogenetic studies to identify 

homologous positions: an example of alignment and data presentation from the 

frogs. Mol Phylog Evol 4: 314-330. 



Kjer, K.M. (2004) Aligned 18S and insect phylogeny. Syst Biol 53: 506-514. 

Kristensen, N.P. 1997. The groundplan and basal diversification of the hexapods. In: 

Fortey, R.A. & Thomas, R.H. (eds.), Arthropod Relationships: pp. 281-293. 

London: Chapman & Hall.  

Kukalová-Peck, J. 1987. New Carboniferous Diplura, Monura and Thysanura, the 

hexapod groundplan, and the role of thoracic side lobes in the origin of wings 

(Insecta). Can J Zool 65: 2327-2345.  

Lavrov, D.V., Boore, J.L. and Brown, W.M. (2002) Complete mt DNA sequences of 

two millipedes suggest a new model for mitochondrial gene rearrangement: 

duplication and non-random loss. Mol Biol Evol 19: 163-169. 

Lavrov, D.V., Brown, W.M. and Boore, J.L. (2004) Phylogenetic position of the 

Pentastomida and (pan)crustacean relationships. Proc R Soc Lond B 271: 537-

544. 

Lowe, T.M. and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection 

of tRNA genes in genomic sequence. Nucl Acids Res 25: 955-964. 

Macey, J.R., Schulte II, J.A., and Larsen, A. (2000) Evolution and phylogenetic 

information content of mitochondrial genomic structural features illustrated with 

acrodont lizards. Syst Biol 49: 257-277. 

Mallatt, J.M., Garey, J.R. and Shultz, J.W. (2004) Ecdysozoan phylogeny and 

bayesian inference: first use of nearly complete 18S and 28S rRNA gene 

sequences to classify the arthropods and their kin. Mol Phyl Evol 31: 178-191. 

Misof, B. and Fleck, G. (2003) Comparative analysis of mt LSU rRNA secondary 

structures of Odonates: structural variability and phylogenetic signal. Insect Mol 

Biol 12: 535-547. 

Nardi, F., Spinsanti, G., Boore, J.L., Carapelli, A., Dallai, R. and Frati, F. (2003) 

Hexapod origins: Monophyletic or paraphyletic?  Science 299: 1887-1889. 



Negrisolo, E., Minelli, A. and Valle, G. (2004) The Mitochondrial Genome of the 

House Centipede Scutigera and the Monophyly Versus Paraphyly of Myriapods 

Mol Biol Evol 21: 770-780.  

Okimoto, R., Macfarlane, J.L. and Wolstenholme, D.R. (1990) Evidence for the 

frequent use of TTG as the translation initiation codon of mitochondrial protein 

genes in the nematodes, Ascaris suum and Caenorhabditis elegans. Nucleic Acids 

Res 18: 6113-6118. 

Page, R.D.M., Cruickshank, R. and Johnson, K. P. (2002) Louse (Insecta: 

Phthiraptera) mitochondrial 12S rRNA secondary structure is highly variable. 

Insect Mol Biol 11: 361-369. 

Pallissa, A. (1964): Insekten I: Apterygota. Quelle & Meyer, Leipzig, Germany. 

Perna, N.T. and Kocher, T.D. (1995) Patterns of nucleotide composition at fourfold 

degenerate sites of animal mitochondrial genomes. J Mol Evol 41, 353-358. 

Podsiadlowski, L. and Bartolomaeus T. (2005) Organization of the mitochondrial 

genome from the mantis shrimp Pseudosquilla ciliata (Crustacea: Stomatopoda). 

Mar Biotechnol, in press. 

Rawlings, T.A.,  Collins, T.M. and Rüdiger B. (2001) A Major Mitochondrial Gene 

Rearrangement Among Closely Related Species. Mol Biol Evol 18: 1604-1609. 

Regier, J.C., Shultz, J.W. and Kambic, R.E. (2005) Pancrustacean phylogeny: 

hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc 

Roy Soc B 272: 395-401. 

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. and Flook, P. (1994) 

Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and 

a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc 

Am 87: 651-704. 

Simon, C., Nigro, L., Sullivan, J. Holsinger, K., Martin, A., Grapputo, A., Franke, A. 

and McIntosh, C. (1996) Large differences in substitutional pattern and 



evolutionary rate of 12S ribosomal RNA genes. Mol Biol Evol 13: 923-932. 

Stys, P. and Bilinski, S. (1990) Ovariole types and the phylogeny of hexapods. Biol 

Rev 65: 401-429. 

Telford, M.J., Herniou, E.A., Russell, R.B. and Littlewood, T.J. (2000) Changes in 

mitochondrial genetic codes as phylogenetic characters; two examples from the 

flatworms. Proc Nat Acad Sci USA 97: 11359-11364. 

Wilson, K., Cahill, V., Ballment, E. and Benzie, J. (2000) The complete sequence of 

the mitochondrial genome of the crustacean Penaeus monodon: are 

malacostracan crustaceans more closely related to insects than to branchiopods? 

Mol Biol Evol 17: 863-874. 

Wolstenholme, D. (1992) Animal mitochondrial DNA: structure and evolution.  Int Rev 

Cytol 141: 173-216. 

Wyman, S.K., Jansen, R.K. and Boore, J.L. (2004). Automatic annotation of 

organellar genomes with DOGMA. Bioinformatics 20: 3252-3255. 

Xia, X. and Xie, Z. (2001) DAMBE: software package for data analysis in molecular 

biology and evolution. J Hered 92: 371-373.  



Legends to Figures 

 

Figure 1. Genome organization of the mitochondrial genomes of two Campodea 

fragilis and C. lubbocki. Arrows indicate direction of coding regions, numbers inside 

the circle represent the size of the fragments separating two adjacent genes (positive 

values) or the amount of shared nucleotides between two overlapping genes 

(negative values). Large non-coding regions are dashed, with the one located 

between rrnS and trnI being the putative control region. 

 

Figure 2. Hypothetical secondary structure features found in intergenic non-coding 

regions: ncod between trnS2 and nad1 in C. fragilis (a) and C. lubbocki (b); ncod 

between nad2 and trnW in C. fragilis (c). 

 

Figure 3. A+T content, calculated in a sliding window of 100 bp, along the J-strand of 

the mitochondrial genomes of C. fragilis and C. lubbocki. The position and coding 

directions of protein- and rRNA-coding genes are shown below. 

 

Figure 4. Putative secondary structures of mitochondrial tRNAs of C. fragilis, C. 

lubbocki, and Japyx solifugus. Only tRNAs exhibiting secondary structure changes in 

one or both Campodea species are shown. All other tRNAs of C. fragilis and C. 

lubbocki can be folded into cloverleaf-like secondary structures. 

 

Figure 5. Secondary structure model of the mitochondrial 12S rRNA in the two 

dipluran species. 

 

Figure 6. Secondary structure model of the mitochondrial 16S rRNA in the two 

dipluran species. 



 

Figure 7. Generalized secondary structure model of Campodea mitochondrial 12S 

(a, domains I-III) and 16S (b, domains I, II, IV and V) rRNAs. Grey beads show the 

most variable regions, in base composition, sequence length or secondary structure, 

of the different domains in both species. Black beads represent highly conserved 

fragments. 
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C. lubbocki 





Table 1 
 
 
 
 
 
 

 * incomplete genome data; missing sequence of control region or control region and rRNAs respectively 

Higher ranking taxon Species Accession 
number 

PCG    1st codon 
Position 

2nd codon 
position 

3rd codon 
position 

rRNAs tRNAs total
 

          

Diplura Campodea fragilis XX 70.6 67.0      

      

      

      

      

      

      

      

      

      

      

      

      

      

65.8 79.0 76.5 76.4 72.6

“ Campodea lubbocki XX 73.0 68.3 66.9 84.2 80.3 76.1 74.9*

“ Japyx solifugus AY771989 64.1 63.5 60.4 68.5 65.0 64.9 64.8

Collembola Gomphiocephalus hodgsoni NC005438 72.4 66.6 65.5 86.2 77.0 76.0 74.1

“ Tetrodontophora bielanensis NC002735 71.3 66.4 66.2 81.4 77.0 75.5 72.7

“ Podura aquatica NC006075 64.7 60.0 64.1 70.0 - 70.5 -

“ Onychiurus orientalis NC006074 68.5 71.5 65.8 66.2 - 73.2 -

Archaeognatha Petrobius brevistylis AY956355 66.2 61.1 63.2 74.2 71.7 70.6 67.3

“ Nesomachilis australica NC006895 67.2 60.8 64.4 76.8 72.6 70.3 68.8

Zygentoma Tricholepidion gertschi NC005437 67.7 63.0 63.0 77.1 71.2 69.0 68.6

“ Thermobia domestica NC006080 66.3 59.4 62.9 76.6 67.9 67.2 67.0

Pterygota Locusta migratoria NC001712 74.1 68.9 66.1 87.3 77.7 74.0 75.3

“ Drosophila yakuba X03240 76.7 69.8 66.4 93.7 81.9 76.6 78.6

“ Apis mellifera L06178 83.3 79.3 75.4 95.2 83.4 87.1 84.9

 
 



Table 2 
 
 
 
 
 
 
 
 

Gene   identity  C. fragilis C. lubbocki 

(Strand)        
           

(%) length start/stop %A %C %G %T length start/stop %A %C %G %T

atp6 (+) 73.3   675     ATG/TAA 31.3 20.6 10.7 37.5   675     ATG/TAA 30.7 18.4 9.6 41.3 

atp8 (+) 57.0   156     ATT/TAA 38.5 14.7 4.5 42.3   156     ATC/TAA 35.3 18.0 5.8 41.0 

cox1 (+) 77.4 1540     ATT/T - - 29.0 19.7 15.7 35.7 1542     ATA/TAA 29.0 18.6 14.6 37.8 

cox2 (+) 77.9   679     ATA/T - - 33.1 19.3 11.6 35.9   684     ATA/TAA 33.2 17.0 10.5 39.3 

cox3 (+) 76.6   787     ATG/T - - 30.9 21.1 14.1 33.9   787     ATG/T - - 28.7 18.7 13.1 39.5 

cob (+) 76.5 1143     ATG/TAA 32.8 19.5 11.2 36.5 1140     ATG/TAA 32.5 17.5 10.8 39.2 

nad1 (-) 70.7   924     ATT/TAA 26.4 10.5 16.3 46.8   921     ATA/TAA 29.0 8.3 17.3 45.5 

nad2 (+) 61.3 1005     ATA/TAA 32.1 20.2 9.2 38.5 1005     ATT/TAA 32.4 16.9 8.0 42.7 

nad3 (+) 62.9   357     ATA/TAA 35.0 18.2 7.8 38.9   347     ATC/TA - 34.9 16.7 7.8 40.6 

nad4 (-) 68.7 1338     ATG/TAA 25.7 8.2 17.6 48.5 1326     ATG/T - - 27.9 6.9 17.2 48.0 

nad4l (-) 74.0   285     ATG/TAA 28.4 4.9 20.4 46.3   285     ATG/TAG 27.4 1.8 21.4 49.5 

nad5 (-) 73.7 1707     ATA/TAA 26.5 8.0 19.5 46.0 1710     ATC/TAG 30.0 7.3 17.5 45.2 

nad6 (+) 49.5   510     ATT/TAA 38.4 17.1 4.7 39.8   524     ATT/TA - 37.6 16.8 4.8 40.8 

 
 



Table 3 
 
 
 
 

  C.l. C.f. J.s. G.h. T.b. P.a. O.o. P.b. N.a. T.g. T.d. L.m. 
              

GCA A 1.15 1.03 1.68 1.22 1.13 0.82 0.75 1.29 1.66 1.70 1.33 2.11 
GCU A 2.18 1.87 1.39 2.17 2.00 1.83 2.55 1.42 1.52 1.28 1.46 1.68 
GCG A 0.06 0.14 0.31 0.12 0.09 0.44 0.15 0.33 0.16 0.20 0.23 0.05 
GCC A 0.62 0.96 0.62 0.49 0.78 0.91 0.55 0.96 0.67 0.83 0.99 0.16 
UGC C 0.33 0.43 0.28 0.41 0.31 0.82 0.58 0.63 0.35 0.50 0.49 0.36 
UGU C 1.67 1.57 1.72 1.59 1.69 1.18 1.42 1.38 1.65 1.50 1.51 1.64 
GAU D 1.46 1.40 1.09 1.53 1.44 1.22 1.20 1.44 1.18 1.32 1.49 1.68 
GAC D 0.54 0.60 0.91 0.47 0.56 0.78 0.80 0.56 0.82 0.69 0.51 0.33 
GAG E 0.51 0.58 0.63 0.41 0.49 0.55 0.56 0.71 0.49 0.47 0.54 0.29 
GAA E 1.49 1.42 1.37 1.59 1.51 1.45 1.44 1.29 1.51 1.53 1.46 1.71 
UUU F 1.75 1.66 1.30 1.80 1.65 1.50 1.66 1.59 1.67 1.49 1.32 1.49 
UUC F 0.25 0.34 0.70 0.20 0.35 0.50 0.34 0.41 0.33 0.51 0.68 0.52 
GGU G 1.21 1.48 1.39 0.87 1.02 0.71 0.96 1.27 1.23 1.22 1.24 1.77 
GGG G 1.00 0.66 0.71 1.01 0.90 1.87 1.27 0.82 0.80 0.98 0.51 0.19 
GGC G 0.11 0.41 0.42 0.21 0.17 0.38 0.34 0.45 0.55 0.20 0.83 0.02 
GGA G 1.68 1.45 1.48 1.92 1.91 1.03 1.43 1.46 1.43 1.60 1.42 2.02 
CAC H 0.35 0.84 1.19 0.32 0.73 1.11 0.49 0.86 0.87 0.78 0.80 0.70 
CAU H 1.65 1.17 0.81 1.68 1.27 0.89 1.51 1.14 1.13 1.23 1.21 1.30 
AUU I 1.75 1.61 1.46 1.77 1.65 1.49 1.48 1.49 1.63 1.59 1.63 1.78 
AUC I 0.25 0.39 0.54 0.23 0.35 0.52 0.52 0.51 0.37 0.41 0.37 0.23 
AAA K 1.64 1.60 1.22 1.64 1.44 1.44 1.58 1.41 1.45 1.51 1.21 1.41 
AAG K 0.36 0.40 0.78 0.36 0.56 0.56 0.42 0.59 0.55 0.49 0.80 0.59 
UUG L 0.53 0.70 1.67 0.31 0.64 0.53 0.81 0.86 1.07 1.00 0.56 0.54 
UUA L 3.77 3.50 1.93 4.04 3.39 2.54 2.85 2.62 2.46 2.65 2.61 3.91 
CUA L 0.56 0.66 1.49 0.64 1.07 1.23 0.81 1.17 1.08 1.28 1.18 0.83 
CUC L 0.24 0.28 0.11 0.08 0.12 0.38 0.25 0.18 0.33 0.16 0.44 0.06 
CUG L 0.08 0.07 0.25 0.04 0.07 0.31 0.21 0.26 0.13 0.23 0.13 0.05 
CUU L 0.81 0.79 0.55 0.89 0.71 1.02 1.08 0.90 0.93 0.69 1.09 0.61 
AUG M 0.27 0.51 0.46 0.23 0.23 0.51 0.38 0.44 0.32 0.45 0.43 0.31 
AUA M 1.73 1.49 1.54 1.78 1.77 1.49 1.62 1.56 1.68 1.55 1.57 1.69 
AAC N 0.31 0.56 1.00 0.41 0.51 0.80 0.66 0.66 0.64 0.46 0.59 0.48 
AAU N 1.69 1.44 1.00 1.59 1.49 1.20 1.34 1.34 1.36 1.54 1.41 1.52 
CCU P 2.06 1.38 1.58 2.05 1.80 1.70 2.05 1.67 1.70 0.94 1.83 1.50 
CCG P 0.17 0.32 0.15 0.09 0.15 0.19 0.18 0.36 0.19 0.14 0.18 0.09 
CCC P 0.78 0.43 0.59 0.39 0.46 0.99 0.43 0.93 0.69 0.61 0.85 0.12 
CCA P 0.99 1.87 1.68 1.47 1.59 1.12 1.34 1.04 1.43 2.31 1.14 2.29 
CAG Q 0.20 0.30 0.49 0.18 0.14 0.40 0.26 0.37 0.54 0.27 0.23 0.10 
CAA Q 1.80 1.71 1.51 1.82 1.86 1.60 1.74 1.63 1.46 1.73 1.77 1.91 
CGA R 2.25 2.59 1.31 1.78 1.71 1.39 1.47 2.26 1.42 1.93 2.03 2.47 
CGC R 0.17 0.31 0.30 0.44 0.33 0.77 0.33 0.26 0.14 0.21 0.49 0.07 
CGG R 0.00 0.31 0.48 0.07 0.65 0.77 0.41 0.45 0.68 0.83 0.62 0.15 
CGU R 1.58 0.78 1.91 1.70 1.31 1.08 1.80 1.03 1.76 1.03 0.86 1.31 
AGC S 0.13 0.40 0.33 0.30 0.16 0.47 0.29 0.40 0.43 0.17 0.30 0.07 
AGU S 0.61 0.87 1.18 0.91 1.03 0.99 0.73 1.10 0.86 0.95 1.28 0.53 
AGG S 0.23 0.23 0.18 0.04 0.16 0.09 0.00 0.07 0.02 0.30 0.03 0.04 
UCU S 2.09 2.30 1.72 2.82 2.43 2.66 2.67 1.93 2.56 1.86 2.40 2.69 
UCG S 0.13 0.11 0.23 0.11 0.16 0.18 0.31 0.47 0.26 0.11 0.20 0.09 
AGA S 1.73 1.23 0.90 1.46 1.10 1.42 1.40 1.87 1.90 1.46 1.38 1.79 
UCC S 0.71 0.40 0.72 0.47 1.06 0.90 0.94 0.81 0.64 0.68 0.69 0.15 
UCA S 2.38 2.45 2.74 1.89 1.91 1.29 1.65 1.35 1.33 2.48 1.73 2.65 
ACA T 1.63 1.64 1.92 1.40 1.27 1.21 1.07 1.52 1.69 1.93 1.68 2.56 
ACU T 1.65 1.61 1.13 2.28 1.93 1.79 2.01 1.52 1.43 1.18 1.54 1.15 
ACC T 0.67 0.73 0.74 0.30 0.73 0.74 0.78 0.75 0.76 0.80 0.68 0.23 
ACG T 0.05 0.02 0.22 0.02 0.07 0.27 0.15 0.21 0.12 0.09 0.09 0.06 
GUU V 1.76 1.51 1.30 1.83 1.54 1.50 1.44 1.45 1.69 1.56 1.46 2.08 
GUG V 0.29 0.48 0.82 0.42 0.28 0.92 0.74 0.57 0.47 0.48 0.35 0.07 
GUA V 1.70 1.49 1.78 1.60 1.96 1.16 1.33 1.55 1.54 1.56 1.91 1.75 
GUC V 0.25 0.53 0.11 0.15 0.22 0.43 0.49 0.43 0.30 0.41 0.28 0.11 
UGA W 1.55 1.77 1.39 1.62 1.72 1.65 1.30 1.65 1.54 1.71 1.70 1.92 
UGG W 0.45 0.23 0.61 0.38 0.28 0.35 0.70 0.36 0.46 0.29 0.31 0.08 
UAU Y 1.67 1.54 1.30 1.54 1.47 1.12 1.44 1.35 1.40 1.48 1.46 1.62 
UAC Y 0.33 0.46 0.70 0.46 0.53 0.88 0.56 0.65 0.60 0.52 0.54 0.38 
Bolded numbers represent the codon most commonly used to code the amino acid. C.f.= Campodea 
fragilis, C.l.= C. lubbocki, J.s.= Japyx solifugus, G.h.=Gomphiocephalus hodgsoni, T.b.= Tetrodonto-
phora bielanensis, P.a.= Podura aquatica, O.o.= Onychurus orientalis, P.b.= Petrobius brevistylis, 
N.a.= Nesomachilis australica, T.g.= Tricholepidion gertschi, T.d.= Thermobia domestica, L.m.= 
Locusta migratoria  


